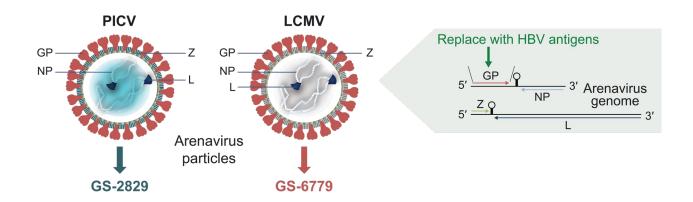


Safety, Tolerability, Immunogenicity, and Antiviral Efficacy of GS-2829 and GS-6779, a Novel, Arenaviral-Vectored, Therapeutic Hepatitis B Vaccine: Results From a Phase 1b Study in Virally Suppressed Patients With Chronic Hepatitis B

Edward J Gane¹, Chi-Yi Chen², Tsung-Hui Hu³, Ching-Chu Lo⁴, Pin-Nan Cheng⁵, Tung-Hung Su⁶, Ming-Lung Yu⁷, Frida Abramov⁸, Dana Tedesco⁸, Mario Cortese⁸, David Z Pan⁸, Scott Balsitis⁸, Teri Chew⁸, Sarah Arterburn⁸, Christopher Richards⁸, Anu O Osinusi⁸, Wen-Juei Jeng^{9,10}, Yao-Chun Hsu¹¹

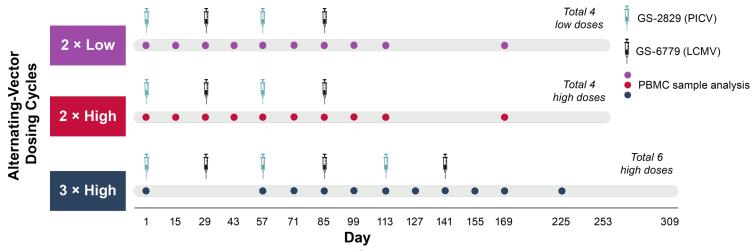
¹University of Auckland, Auckland, New Zealand; ²Division of Gastroenterology and Hepatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan; ³Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; ⁴Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City, Taiwan; ⁵Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan; ⁵Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¬Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; ³Gilead Sciences, Inc., Foster City, CA, USA; ¹Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taiwan; ¹¹College of Medicine, Chang Gung University, Taoyuan, Taiwan; ¹¹Department of Medical Research, E-Da Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan


Disclosures

Edward J Gane served as an advisor for Aligos Therapeutics; Assembly Biosciences; AusperBio; Blue Jay Therapeutics; nChroma Bio; Epigenic Therapeutics; Gilead Sciences, Inc.; GSK; IntegerBio; Precision BioSciences; Tune Therapeutics; Vir Biotechnology; and Virion Therapeutics. Chi-Yi Chen, Tsung-Hui Hu, Ching-Chu Lo, Pin-Nan Cheng, and Ming-Lung Yu report no conflicts of interest. Tung-Hung Su received a research grant from Gilead Sciences, Inc.; served as a consultant for Gilead Sciences, Inc.; and was on speakers bureaus for Abbott; AbbVie; Bristol Myers Squibb; Eisai; Gilead Sciences, Inc.; Merck Sharp and Dohme; Roche; and Sysmex. Frida Abramov, Dana Tedesco, Mario Cortese, David Z Pan, Scott Balsitis, Teri Chew, Sarah Arterburn, Christopher Richards, and Anu O Osinusi are current or former employees of Gilead Sciences, Inc., and may own stock or stock options. Wen-Juei Jeng served as an advisory board member for Gilead Sciences, Inc., and GSK. Yao-Chun Hsu received research grants from Gilead Sciences, Inc.; lecture fees from AbbVie; Bristol Myers Squibb; Gilead Sciences, Inc.; Grifols; and Roche; and consulting fees or advisory board honoraria from AstraZeneca; AusperBio; Gilead Sciences, Inc.; GSK, and Sysmex.

Background

- CHB remains a global health challenge,¹ with current therapies rarely achieving functional cure—defined as sustained loss of HBsAg and HBV DNA <LLOQ off therapy²
- Therapeutic vaccines represent a promising approach to boost HBV-specific immune responses, which may be an essential component of HBV cure regimens³


Background

- GS-2829 (PICV) and GS-6779 (LCMV) are nonreplicating arenaviral-vectored vaccines engineered to deliver conserved HBV antigens (HBsAg, HBcAg, and pol)
- In healthy adults, alternating doses of GS-2829 and GS-6779 were safe and well tolerated, and induced robust HBV-specific T-cell responses without anti-vector neutralization¹

Objective and Study Design

- Objective: Safety, tolerability, immunogenicity, and antiviral efficacy of GS-2829 and GS-6779
- Design: Randomized (4:1), blinded, placebo-controlled, Phase 1b study (NCT05770895) conducted in New Zealand and Taiwan

- Population: Adults with virally suppressed CHB without cirrhosis
 - HBsAq >LLOQ and ≤5000 IU/mL
 - ALT <3 × ULN

Endpoints

Safety: AEs and laboratory abnormalities

Virologic and Serologic Response:

- Evaluated change from baseline in HBcrAg and HBsAg levels in all patients and HBeAg levels in HBeAg-positive patients
- Development of HBsAg antibodies and HBeAg antibodies to confirm seroconversion

HBV-specific T-Cell Analysis:

- Immunogenicity evaluated via IFNγ ELISpot
- Polyfunctionality assessed by flow cytometry via intracellular cytokine staining

Baseline Demographic and Disease Characteristics

Parameter	2 × Low (n = 8)	2 × High (n = 8)	3 × High (n = 8)	Placebo (n = 6)
Age, years, median (min, max)	57 (41, 59)	45 (28, 56)	45 (37, 62)	51 (30, 56)
Sex, male, n (%)	5 (63)	5 (63)	7 (88)	2 (33)
Race, Asian, n (%)	8 (100)	8 (100)	8 (100)	6 (100)
BMI, kg/m ² , median (Q1, Q3)	22.5 (19.1, 24.1)	25.6 (23.2, 27.1)	24.5 (23.0, 29.4)	22.6 (20.7, 24.8)
HBsAg, IU/mL, median (min, max)	1579 (1, 3737)	863 (1, 3725)	401 (25, 2260)	1079 (7, 1931)
HBeAg positive, n (%)	0	7 (88)	4 (50)	2 (33)
HBV DNA <lloqa, (%)<="" n="" td=""><td>7 (88)</td><td>7 (88)</td><td>8 (100)</td><td>6 (100)</td></lloqa,>	7 (88)	7 (88)	8 (100)	6 (100)
HBV genotype, n (%)				
В	4 (50)	4 (50)	3 (38)	2 (33)
C	2 (25)	2 (25)	4 (50)	3 (50)
Unclassified	2 (25)	2 (25)	1 (13)	1 (17)
ALT, U/L, median (Q1, Q3)	15 (14, 23)	21 (17, 34)	28 (17, 30)	17 (14, 24)
Prior interferon, n (%)	2 (25)	0	0	0

^aAll patients had HBV DNA <LLOQ at screening, as it was an inclusion criterion (LLOQ = 10 IU/mL).

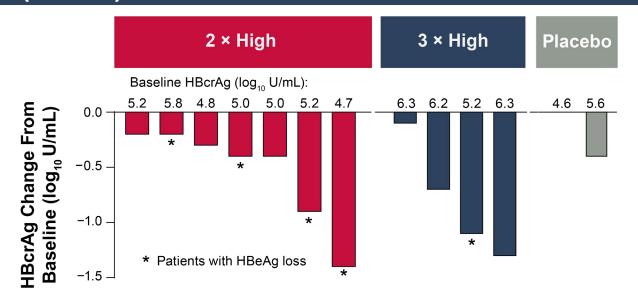
ALT, alanine aminotransferase; BMI, body mass index; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; LLOQ, lower limit of quantitation; max, maximum; min, minimum; Q, quartile.

Overall Safety Summary – Adverse Events

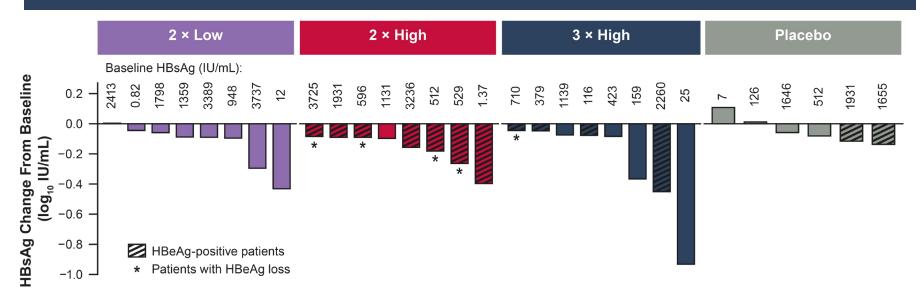
	GS-2829 + GS-6779			
Adverse Events, n (%)	2 × Low (n = 8)	2 × High (n = 8)	3 × High (n = 8)	Placebo (n = 6)
Any AE	6 (75)	5 (63)	6 (75)	3 (50)
Any AE related to study drug	4 (50)	3 (38)	5 (63)	2 (33)
Any Grade ≥3 AE, SAE, or death	0	0	0	0
Any AE leading to premature d/c	0	0	0	0
Common AEs (≥2 in any cohort)				
Injection-site reaction ^a	3 (38)	3 (38)	3 (38)	2 (33)
Fatigue	3 (38)	3 (38)	3 (38)	1 (17)
Headache	2 (25)	1 (13)	1 (13)	2 (33)
Malaise	1 (13)	1 (13)	3 (38)	1 (17)
Myalgia	2 (25)	2 (25)	2 (25)	0
Cough	0	3 (38)	1 (13)	1 (17)
Arthralgia	2 (25)	0	1 (13)	0
COVID-19	0	0	0	2 (33)

Overall Safety Summary – Laboratory Abnormalities

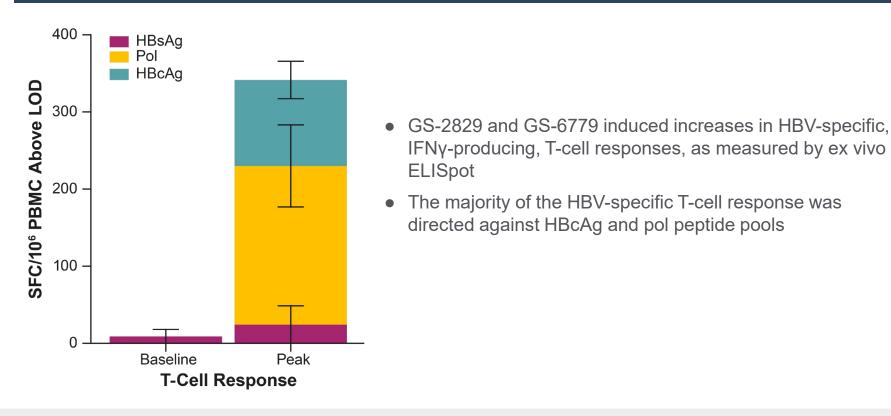
	GS-2829 + GS-6779			
Patients, n (%)	2 × Low (n = 8)	2 × High (n = 8)	3 × High (n = 8)	Placebo (n = 6)
Any Grade ≥1 postbaseline value	7 (88)	8 (100)	8 (100)	6 (100)
Grade 1	4 (50)	5 (63)	6 (75)	5 (83)
Grade 2	2 (25)	3 (38)	1 (13)	1 (17)
Grade 3	1 (13)	0	1 (13)	Ô
Grade 4	0	0	0	0


- Grade 3 abnormalities were observed in 2 patients:
 - Creatine kinase elevation (2 × low): patient reported increased exercise or physical activity prior to blood sampling
 - Lymphocyte count decline (3 × high): patient had Grade 2 lymphopenia at screening

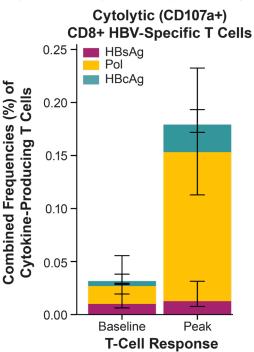
Maximum qHBeAg Decline From Baseline in HBeAg-Positive Patients (n = 13)


- All HBeAg-positive patients in high-dose cohorts showed declines in qHBeAg
- Five of 11 (45%) HBeAg-positive patients in high-dose cohorts lost HBeAg and developed anti-HBe
 - One patient (3 × high) lost anti-HBe but remained HBeAg negative
 - One patient (2 × high) had HBeAg seroreversion but remained anti-HBe positive

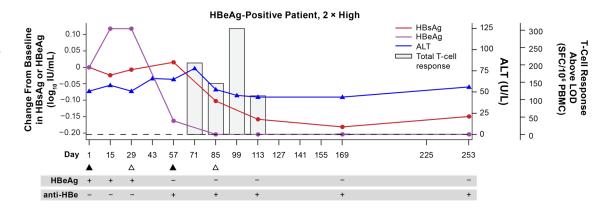
Maximum HBcrAg Decline From Baseline in HBeAg-Positive Patients (n = 13)


All HBeAg-positive patients in high-dose cohorts showed declines in HBcrAg

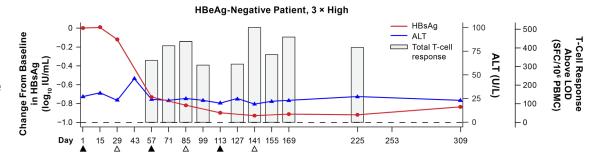
Maximum HBsAg Decline From Baseline in All Patients (n = 30)


- HBsAg declines were observed for all patients in the high-dose cohorts
- No patients achieved HBsAg loss

Combined HBV-Specific T-Cell Responses in High-Dose Cohorts


Cytokine-Producing CD8+ T Cells at Baseline and at Peak Response in High-Dose Cohorts

 Administration of GS-2829 and GS-6779 resulted in the generation of HBV-specific CD8+ T cells with increased cytolytic (CD107a+) capacity and high polyfunctionality



Example Cases: HBV-Specific T-Cell Response in an HBeAg-Positive and an HBeAg-Negative Patient

 HBeAg-positive patients: HBVspecific T-cell responses often coincided with antigen declines and mild ALT increases, supporting immune-mediated antiviral activity

 HBeAg-negative patients: A similar pattern of T-cell response was observed in HBeAg-negative patients

Key Takeaways

- Alternating doses of GS-2829 and GS-6779 were safe and well tolerated in virally suppressed patients with CHB
- High-dose vaccination induced HBV-specific immune responses, accompanied by reductions in HBV antigens and mild ALT increases, indicating that the vaccine is targeting transcriptionally active cccDNA-positive hepatocytes
- GS-2829 and GS-6779 will be combined with other novel therapies to achieve a functional cure for patients with CHB

Acknowledgments

- We thank all study participants and their families, site coordinators, and study investigators at the research centers in New Zealand and Taiwan
- This study was funded by Gilead Sciences, Inc.
- Editorial support was provided by Molly Yeager, PhD, of Red Nucleus, and funded by Gilead Sciences, Inc.
- Correspondence: Edward J Gane, MD, FAASLD, EdGane@adhb.govt.nz

Copies of this presentation obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

